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A study is presented of the two-dimensional case of light propagation in a turbid medium involving sharply
anisotropic one-center scattering in accordance with the Heney-Greenstein law, with strong absorption (when
the photon absorption length is shorter than the transport length). An exact analytic solution that takes into
account fluctuations of the photon paths is obtained within the framework of the small-angle approximation
for the transfer equation in the case of a light beam normally incident upon the plane surface of the medium.
The parameters of the radiation distribution (angular spectrum and attenuation coefficient) for the deep-

propagating mode are analyzed in detail.

1. INTRODUCTION

Studies of the propagation of radiation in various scatter-
ing media have recently aroused widespread interest.:
Whereas two decades ago these problems excited mainly
specialists in the fields of radio and optical communica-
tions and in the physics of the atmosphere and of the
ocean, the recent interest in investigation of laws govern-
ing multiple scattering of light is related, to a large extent,
to the fundamental issue of wave propagation in dis-
ordered media with various types of interaction.

One of the most important stages in the description of
light propagation in a scattering medium consists in deriv-
ing the average intensity of the radiation from the solution
of the transfer equation (Boltzmann’s transport equation)
or in the equation for the mutual coherence function that
is related to the transfer equation by the Fourier trans-
formation. Unfortunately, no exact analytical solution of
the transfer equation in the general case can be obtained.
Therefore the main efforts in this field are usually con-
centrated on the development of approximately analytical
and numerical methods. ’

At the same time, of particular interest is the search for
exactly solvable models that are useful for qualitative com-
prehension of the peculiarities of the propagation of radia-
tion in disordered media. From this point of view it is
necessary that we mention the exact solution of the prob-
lem in the case of isotropic scattering (the Wiener-Hopf
method). A theory that also is undergoing rapid develop-
ment is the small-angle theory of light propagation, which
is valid for media with large-scale scattering centers
(@ >> A, where a represents the size of the scatterer and A
is the wavelength of light radiation divided by 2x). In
this theory two approximations elaborated in detail are
known: the standard small-angle approximation®®* and
the approximation that takes into account the spreadout
of the photon path lengths.!*? The approximate solu-
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tion'*! is applied in the case of strong absorption (/; << I,.;

L, is the photon absorption length, and I, is the transport
length of elastic scattering) and in the nonstationary
problem.”” However, this solution of the transfer equa-
tion, which takes into account the fluctuations of photon
paths, can be obtained only in the diffusion approximation
in the angular variable in the elastic collision integral. It
is known that the diffusion approximation (the Fokker—
Planck approximation) is applicable only if the phase func-
tion decreases, as the angle of single scattering increases,
more rapidly than y™, where vy is the single-scattering
angle.'® In practice this condition is usually not satis-
fied. Therefore the results®*® may serve only for quali-
tative analysis of the laws governing light propagation.
In many natural and artificial media the phase functions
decrease more slowly than y ™, and for studying the propa-
gation of radiation in these media it is necessary that one
make use of other approximate methods for solving the
transfer equation.’®®?  However, since no exact solution
of the problem in the small-angle approximation with ac-
count taken of absorption has been found yet for phase
functions of the sort indicated, the precision of the above-
mentioned approximate methods can be estimated only by
comparison with experimental data or with the results of
numerical calculations.

Hitherto in our discussion we have dealt with the scat-
tering of light in an ordinary three-dimensional (3D)
medium, and all assertions were relevant only to that
case. Recently, however, a number of publications have
raised the issues of multiple scattering of light in two-
dimensional (2D) matter, which can be represented as an
ensemble of disordered parallel fibers or rods.22® The
interest in 2D scattering is related to both analytical and
numerical investigations of radiation transport in media
with oriented, essentially nonspherical, scatterers?*2?® and
to the problem of localization of waves in random me-
dia.?**>*  Experiments with 2D multiple scattering were
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performed with optical fibers?® and with anisotropic scat-
terers (e.g., rods®).

Unlike in the case of a 3D medium, in the 2D small-
angle case there exist, besides the known small-angle-
diffusion approach to the problem of light propagation,
other exactly solvable models. One of the most interest-
ing models is the scattering model that complies with the
Heney-Greenstein law and that describes the diffraction
cross section averaged over oscillations.

As in the usual 3D case, the degree of scattering anisot-
ropy depends on the ratio of the size of the scattering cen-
ter a (in the 2D case, the ratio of the size of the transverse
cross section of the fiberlike inhomogeneity) and the wave-
length of the incident radiation A. The effective multiple-
scattering angle y.; can be estimated as vy, ~ Aa; and
therefore, when A << a, the case that we are interested in,
sharply anisotropic small-angle scattering, occurs.

In this limit case of scattering through small angles, the
Heney-Greenstein, HG, 2D phase function can be written
in the form

L v

HG, L7

X 0)=— ' o))
T Yef + 7?

7. may be estimated from comparison with the diffraction

cross section:

A
of = ™ 2
Yer =7 2)
Phase function (1) is a particular case (v = 1/2) of the
more general scattering law in the form

1 Te+Y2) v
X v(y) - ,\/-7; F(V) ('Yefz + ,y2)u+1/2’ (3)

which is convenient for analytical approximation of the
experimentally determined cross sections.

Since the phase function in the case of sharply aniso-
tropic scattering (y,; << 1) decreases rapidly with the in-
crease of ¥, all the essential information that is relevant to
the scattering depends on the behavior of the scattering in
the region of relatively small angles (y << 1). Therefore
small-angle 2D phase functions (1) and (3) may be consid-
ered to be normalized by the condition

f xdy =1. (CY]

The region of applicability of the small-angle approxi-
mation is determined in problems of transport theory by
the absorption coefficient k (x = I,”").  Thus in the case
of weak absorption (I, >> l,;) the small-angle approxima-
tion is valid only in the restricted region of depths z < I,
(., = 1/os, where ;. = o{l — cos ) is the transport scat-
tering coefficient and o is the scattering coefficient).
The quantity .. can be considered the isotropic radiation
length for the case of purely elastic scattering.

In strongly absorbing media with large-scale scattering
centers (a >> )), when

la << lt,-, i.e., K > Oy, (5)

isotropization of the beam does not occur, since photons
undergoing strong scattering and thus propagating along
more significantly bent trajectories are absorbed before
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they have time to arrive at the depth of isotropization
2 ~ l,. This circumstance results in light always being

scattered through small angles in such media®%:

0%, < 0. < 1. 6)

Here ©2), is the mean square of the multiple-scattering
angle at a depth z, and % is its limit value. Condi-
tion (6) permits application of the small-angle approxima-
tion at any depth. This turns out to be essential in the
search for the analytical solution of the transfer equation.

Below, the exact analytic solution of the small-angle
transfer equation, written so as to take into account fluc-
tuations of the photon paths, is obtained for the 2D
Heney-Greenstein phase function [relation (1)]. A de-
tailed analysis of the solution is performed for various
optical characteristics of the medium.

The asymptotic (deep) mode of radiation propagation
has been considered in the case of strong absorption [rela-
tion (5)). The angular spectrum, the total flux, and other
parameters of the distribution are found. Explicit forms
are obtained of various approximate representations of
the exact solution, which forms are useful both for a quali-
tative understanding of the laws of light propagation in a
medium and for practical calculations.

2. FORMULATION OF THE PROBLEM

Consider a broad stationary light beam of intensity I, in-
cident upon the plane boundary of a 2D medium, in the
x0z plane in which scattering occurs and which occupies
the semispace z > 0 (the z axis is normal to the surface
and directed into the medium); see Fig. 1.

We assume single scattering to be sharply anisotropic
(1 — (cos 9) << 1) and the condition of strong absorption
(I, < 1) to be satisfied.

The transfer equation for the radiation intensity I(z,6)
is of the following form?*:

cos Bgi(azz’—w + kl(z,0) = ﬁI(z,O), 7N
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Fig. 1. Schematic showing main physical quantities, variables,
and geometry of the problem.
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where ﬁI(z,o) is the linearized Boltzmann collision
integral,

BI(z,60) = o f dox()l(z,6) — I(2,6)], ®

and 6 is the angle between the direction in which the
radiation propagates and the yOz plane. In the 2D case,
Yy = ¢ — 0is the angle of single scattering from ¢’ to 6.

Below we consider only the simplest case, from the point
of view of analysis, of an initial flux normally incident
upon the boundary of the medium. The boundary condi-
tion for Egs. (7) and (8) will then be the following:

I(z = 0,6) = 1,5(6). ©)

Strictly speaking, condition (9) holds only for incident
radiation, i.e., in the range of angles —7/2 < 6 < m/2.
However, in the case of strong absorption, when multiple
scattering involves mainly small angles, the backward-
scattered radiation can be neglected, and condition (9) can
be extended to all angles: -7 < 6 < =.

Taking into account that practically all the radiation is
concentrated within the region of small angles, one may
formally consider all angular variables to vary within infi-
nite limits: —w < g, y < o,

Let us single out in the intensity being sought the expo-
nential attenuation of the beam, which takes into account
the absorption of light in the medium,

I(z,0) = I, exp(—«2)1(z,0). (10)

Then, substituting Eq. (10) into Eqs. (7) and (8) and ex-
panding, in small angles 6 up to the first nonnegligible
terms, all the coefficients that occur in the equation ob-
tained for I(z,6), we obtain the transfer equation in the
small-angle approximation with account taken of the in-
fluence of absorption on the photon angular distribution:

ol 3l(z,6) 0)

32 2 Bl(z,0). an

02[(z,0) =
Now the elastic collision integral assumes, within the
small-angle approximation, the following form:

Bl(2,0) = o f doy(PH(z,0) — 1(2,0)]. (12)

Equation (11) differs from the small-angle- -approxima-
tion transfer equation®5™ by the term x(6%/2)1 that takes
into account the fluctuations of photon paths. This term
provides the effect of absorption on multiple scattering
and is of particular importance at large depths.

3. EXACT SOLUTION

For solution of the set of Egs. (11), (12), and (9), we take
advantage of the Fourier transformation over the angle 6:

I(z,0) = % f cos wbi(z, w)dw. 13)
0

We shall search for the Fourier transform of the inten-
sity I(z, w) by the method of separation of variables. In
this case (2, ) can be represented in the form
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I(z,0) = 3 cu®,(w)exp(—Ek,2)
m=0
+ f c(u)® (wexp(—k,2)du. (14)
0

The functions ®,, , are eigenfunctions of the equation

d*®,,,.(q)

Tag® =l - x(@] — &mu}Pn (@), (15)

and

=79 @ (16)

are its eigenvalues. Here, instead of w, the more conve-

nient variable
q = WYef (17)
is introduced, as well as the parameter

20
K 'Yefz

18

The first term in Eq. (14) determmes the contribution
to I(z, o) of the discrete spectrum of Eq. (15); it involves
M eigenvalues. The second term determines the contri-
bution of the continuous spectrum.

Boundary condition (9) results in the equality

M -
2 cn®nlq) + f (WP, ()du = 1. 19
0

m=0

Taking advantage of the eigenfunctions ®,, , that exhibit
the property of orthogonality, one may readily determine
from Eq. (19) the coefficients of the expansion, ¢, and
c(u). Thus for the coefficients c,, we obtain

I (3 (q)dq
—_— (20)

j @ 2(q)dq

In the determination of the values of ¢(u) the normalizing
integral diverges, so in this case it is convenient to make
use of the asymptotic representation ®,,(q), which permits
the use of the respective 8 functions.?

The Fourier transform of the Heney—Greenstein phase
functions [relation (1)] assumes the following form in the
notation of Eq. (17):

x¥q) = exp(—|q). (21)

In accordance with the parity of x°(q), the solution of
Eq. (15) for each eigenvalue ¢, exhibits a certain parity:
it may be either even or odd. However, in the case of a
beam normally incident upon the surface of a medium, the
intensity of the incident radiation is an even function of
the angle 6, and its Fourier transform is an even function
of g. Therefore the odd part of the spectrum does not
contribute to expansion (14), as can be seen from Eq. (20).

The parity of ®,, ,.(q), together with the requirement
that the derivative of this function exist with respect to g,
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Fig. 2. Quantum-mechanical potentials U(g) = 5[l — x(¢)] and
energy levels £, corresponding to the exact boundary problem
(solid curves) and the boundary problem in the QDA (dashed
curves).

leads, for ¢ = 0, to the condition

dcbm.u) '
—_— = 0. 22
(dq @2

The system consisting of Egs. (15) and (22) must be sup-
plemented also by the requirement that a restriction be
imposed on @, ,.(Q).

The obtained boundary problem is equivalent to the
well-known quantum-mechanical problem of the one-
dimensional motion of a particle of energy &n,, in a well
with the potential U(x) = U,[1 — exp(—|x])] (the solid
curves of Fig. 2), the solution of which is presented, for
example, in Ref. 27. In agreement with Ref. 27, the ex-
pression for the functions ®,, , have the form

®,.(g) = sz[2 Vi exp(— %')] ) (23)

Du(g) = Jm[2 Vn eXP<— %—')]

+ a#J_i“[Z\/ﬁ exp<—%>i| s 24)

where J,(x) is the Bessel function and p =2Ve, — 7
(note that g, > ).

Now, calculating c,, and c(u), we obtain the final expres-
sion for the Fourier transform of the intensity I(z, ¢):

f(z, q) = fdiscr(zy q) + icont(z’ Q) 3 (2 5)

where T, diser and I <ot Tepresent the contributions of the dis-
crete and the continuous spectra, respectively.

The function I (2,q) is defined by the following
formula:
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M
Thea(2,9) = 2 emdim [2\/71 exp(— %)]exp(—kmz), (26)

m=0
where k., (1) is expressed through &, from Eq. (16):

¢, +1

1 Foln/2;6n/2 + 1L,6n + 1, —m) ,
o F3(fm + Yo, Ems ém + L€ + 1,26, + 15 —477)

Cm =2

27

where | F; and ,F; are hypergeometric functions and the
quantity &, is the index of the Bessel function in Eq. (23):

En=2Vn-— en. (28)

We recall that the hypergeometric functions , F; and » F;
are particular cases of the generalized hypergeometric
function , F,, defined by the series®®

1 N @@ (@p) 2
pFal(ay); (bg); 21 = kz.o B)e...br R

where b; % 0,—-1,-2,...;j=1,...,q. Here (a) =
ala +1...a +k —1) =T(a+ k)/T(), (@o=1. When
p < g, this series converges for all x, whereas ifp = ¢ + 1,
the series converges under the condition that |x| <1. In
the particular case of p = 2, ¢ = 1 we have the well-
known hypergeometric Gaussian function ,F;, and for
p = q¢ = 1 we have Kummer’s degenerate hypergeometric
function ; F;.

Eigenvalues of the discrete spectrum &, (n) [or &, ()] are
determined from condition (22), which, if we take into
account Eq. (23), assumes the form:

J;.,'@Vn) =0, (29)

where J,/(x) is the derivative of the Bessel function with
respect to its argument.

The dependences of the first several (m = 0,1, 2) eigen-
values £, on 7 are presented in Fig. 3. Note that the
number of roots M of Eq. (29) (the number of levels in
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Fig. 3. Dependences of the first several (m = 0,1, 2) eigenvalues
£, on 7, determined from condition (29).
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the discrete spectrum) increases with the parameter 5
[(Eq. (18)], which is the principal parameter of the problem:
M = M®W); en = e.(n).

If we make use of the asymptotic representation of the
Bessel function in the case when its argument exceeds the
index significantly, it is possible to obtain the following
estimate for M(x):

2 3
M= INT(—; Vn + Z)’ (30)

where INT(x) is the integer part of x. Comparison with
exact calculations reveals that formula (30) turns out to be
very precise even in the region of relatively small 7, when
M = 2,3. One (the first) root of Eq. (29) exists at all 7,
which reflects the general property of the spectrum of a
one-dimensional boundary problem.?®

Regarding the continuous spectrum, the quantities a,
occurring in Eq. (24) are determined from condition (22):

Ji'@Vn)

31
J_i,'2V7) @D

a,= -

Now, substituting Eq. (31) into Eq. (24) and taking account
of Eq. (19), we obtain, on performing simple manipula-
tions, the following expression for I ..;(z, q):

exp(~o2) (* pdp @,
2 -« sinh 7 @,

X J,~,L[2\/5 exp(—%)]exp(—%p?z). (32)

fcont(z, q) =

Here
Qu=q.," +4a,Q,, 33)
where
o2 n Lk,
Q. = _;m le(iE,l + —2-,1 *iuw;—n). (34

Note that, although Eq. (31) contains complex quantities,
Ieont(2,q) itself is a real function, since a,* = - Q% =
Q- Ji* = J ;. Expanding the Bessel function in
Eq. (32) and performing Fourier transformations in
Egs. (26) and (31), we obtain the final expression for the
light intensity in the medium at a depth 2 in the follow-
ing form:

I(z,6) = Lo exp[—(k + 0)z]
TYef

% {M(") 2wt
o TEm + 1) " S + Dt

fm/z +n 1 _
X |:(§m/2 + n)? + (9/%[)2]9"?[ "7 (n em)z]

1o (=" g
+52 ! An<z,!ll=;,e->}’ (35)

n=g M

where
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_ (" _pde Q, 72
Az 4) L» sinh 7 a, T(n + 1 + i)
n + iu/2 oo,
X | — —_—
s ilea{- 7)o
(A, is a real quantity).

Analytical and numerical investigations of the angular
functions occurring in the discrete spectrum reveal that,
as § — =, the angular functions decrease as 874, i.e., with
a power index exceeding 1, with which the phase function
decreases, by 2.

The solution presented is based only on the conditions
of applicability of the small-angle approximation [Egq. (6)].
Formulas (35) and (36) do not imply multiple scattering.
These formulas are applicable, also, at lesser depths, where
the main role is assumed by radiation that is not undergo-
ing any scattering or is undergoing only single scattering.

4. SHARPLY ANISOTROPIC SCATTERING
IN THICK LAYERS: THE QUASI-DIFFUSION
APPROXIMATION

We consider the quasi-diffusion approximation (QDA) to be
a natural generalization of the diffusion approximation in
the angular variable (the Fokker-Planck approximation)
to the case of scattering phase functions decreasing in the
2D case more slowly than 72,

The quasi-diffusion approximation essentially consists
in the Fourier transform of the phase function in Eq. (15)
being replaced by the first term of its expansion in small q.
This corresponds to the phase function of the form of
Eg. (2), occurring in collision integral (12), being replaced
by its asymptote ~y @+,

The condition to be satisfied for application of the QDA is
the same as for the diffusion approximation: the possibil-
ity of expansion in small g is determined by the smallness
of the effective single-scattering angle . as compared
with the characteristic multiple-scattering angle. This
condition implies that the scattering is essentially multiple
and is satisfied in thick layers (z >> [, wherel = o !is the
scattering length).

The quantum-mechanical analogy of one-dimensional
motion in the potential U(x) = Up|x| (dashed curve of
Fig. 2) corresponds to the transport problem within the
QDA. In the case of phase function (2), U(x) = Up|x|®.
The solution for the linear potential U(x) is well known
and is given in Ref. 27.

Unlike in the exact case, no continuous spectrum is
present in the model based on the QDA, while the discrete
spectrum exhibits an infinite number of levels. Therefore
it is evident, beforehand, that the QDA is justified only in
the case of a sufficiently large number of eigenvalues of the
discrete spectrum, the contribution of which, in practice,
totally determines the radiation intensity in the medium.
In the QDA the contribution of levels belonging to the
discrete spectrum, with &, ~ 7, and of the continuous
spectrum are considered negligible.

In accordance with Eq. (30), the above assumptions re-
sult in the condition

n>>1, (37a)

which in the usual notation assumes the form
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1,12 > I3 (837b)

Taking into account the equality I, = I/(1 — {(cos 7), we ob-
tain the following restriction on the degree of elongation
of the phase function:

12 1/2
(_Z) = (%) > (1 — {cos ). 37¢)

K

For characteristic values of ok = lo/l;s = 1 + 3, ¥ ~ 0.1,
we obtain from Eq. (18) that n = 200 =+ 600 and that con-
dition (37) is satisfied with a large safety margin.

Now, bearing in mind the structure of the spectrum of
the problem within the QDA, we proceed to look for the
Fourier transform of intensity (13) in the form

1Pz ) = S cn®Pm(@exp(—kn2) (38)
m=0

instead of that of Eq. (14). Here the eigenfunctions ®,,(q)
are determined by the equation obtained from Eq. (15) by
substitution, for the exact expression of Eq. (21) for x#%(g),
of the approximate expression x#%(g) =~ |g]:

2,

222 — rig] - e Bale). (39)
q

As shown above, the parameter &, is determined by for-
mula (16) and plays the part of energy in the appropriate
quantum-mechanical problem. Condition (22) retains its
effect in the QDA. Boundary condition (9) leads to an
expression that differs from Eq. (19) only in that no con-
tribution of the continuous spectrum is present and by the
substitution of « for M.

The expression for the eigenfunctions of problem (39)
has the form*’

®,(q) = Aim™®lq| = Bm), (40)

where Ai(x) is the Airy function and 8, is determined
from condition (22), which for the functions in Eq. (40)
assumes the form

Ai'(-Bn) = 0. (41)

In accordance with Eq. (41), the (—B,) coincide with
the positions of the extrema of the Airy function on the
negative semiaxis. We can solve Eq. (41) approximately,
making use of the asymptotic representation of the Airy
function. In this case, form =1,

2/3
Bm = [—g— 'rr(m - —i—)] ) 42)

and By = 1.019.
Further, determining the coefficients ¢,

Cm Ai(x)dx, 43)

1 f ®
 BnAP(=Bn) ),
and performing Fourier transformation, we find the

following expression for the radiation intensity I(z,6)
within the QDA:

[®4(,0) = [, ZRKD S cmPpm(;—%m)exp(—kmz),
ef

ef m=0

(44)
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where

1 (" .
Py(x) = m L Ai(y — B)cos(xy)dy, (45)

Em = Bun*o. (46)

Numerical studies show that, as in the exact solution
(Section 3), the angular functions in expansion (44) de-
crease as 6~%, as 0 increases.

The results of Eqgs. (44)-(46) are obtained by solution of
the transformed transfer equation, the equation involving
the elastic collision integral in the QDA, and therefore
the validity of Egs. (44)—(46) is based on the feasibility of
using, in Eq. (12), the asymptote of the phase function for
relatively large scattering angles [or, which is the same, of
expanding, in Eq. (15), the function x(g) in a series up to
the term linear in q]. At the same time, having at our
disposal the exact solution [Egs. (35) and (36)] of the ini-
tial transfer equation [Eqs. (11) and (12)], we can check
how distribution (40) is obtained from Eq. (23). It is also
possible, in the course of such transition, to clarify the
range of applicability of the solution within QDA (37).

The following assertions are valid in conditions of mul-
tiple scattering. First, the main contribution to ex-
pression (25), in the case of z >> [, is due to terms
corresponding to eigenvalues of the discrete spectrum,
namely, to eigenvalues &, << 7(p >=>1). Second, the in-
dex &, of the Bessel function, through which the eigen-
functions ®,,(g) are expressed [Eq. (23)], turns out to be
large and of the order of V7 when 5 >>1. Third, the
angle 6 of multiple photon scattering exceeds the effective
angle of single deviation 7,6 >> v.5), and therefore the
value of ¢ in Eq. (15) can be considered small (g << 1).
The above assertions allow one, by utilizing the asymptotic
Nicholson formula for the Bessel function,? to expand the
argument of Eq. (23) in |g| and the condition & << 7 to ob-
tain for ®,,(q) the following approximate representation:

"~ 7' exp(—|ql/6)

. — 2V eXp(-|q|/2)]
% Al[ 1" exp(—|q|/6)

®,.(q = Jg,,,[ZV'T) exp(—‘—g—l)] =~ 1

1 .
~ WAl(n“alql — B, @7

where

2Vn -2V —&n _ &m
Bm = 7 ~ 48)

Expression (47) coincides, up to an insignificant com-
mon factor, with Eq. (40), while substitution of Eq. (16) into
expression (48) leads to an expression identical to Eq. (46).

It is important to stress that the significance of approxi-
mate equalities (47) and (48) consists not only in the jus-
tification of transition from the exact solution [Eq. (23)] to
the approximate one [expression (47)] but also in the pos-
sibility of determining corrections to the approximate so-
lution with the aid of approximate equalities (47) and (48).
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5. DISCUSSION OF THE RESULTS: THE
DEPTH MODE

At a large depth z only a sole term corresponding to the
minimal decay coefficient &, survives in expansions (14)
and (38). Thus factorization of the solution takes place:
it becomes possible to represent the intensity I(z,8) in the
form of the product of two functions, one of which depends
only on the depth z, while the other depends only on the
scattering angle 6. In experiments the onset of an asymp-
totic depth mode of light propagation manifests itself in
the angular spectrum’s no longer varying with the depth.

Note that simplification of the form of the solution of the
transfer equation in the depth mode significantly extends
the possibilities of application of various approximate and
numerical methods.5'3-16

The conditions for the onset of the depth mode can be
obtained from comparison of the exponents occurring in
the first and second terms of expansions (14) and (37):

z > (49)

By — ko

Within the framework of the QDA, formula (46) makes in-
equality (49) assume the form

oz > 'k, (50)

or, in dimensional units,
2>V Iz, (51)

It is interesting that numerical investigation of the exact
solution reveals condition (50) to hold also when the QDA
is not applicable.

The depth attenuation coefficient %, is determined from
Eq. (16), where g, corresponds to the smallest root of
Eg. (29). Expanding the first root of the derivative of the
Bessel function with respect to its large index,? which is
valid for  >> 1, one can obtain the following asymptotic
expression for kg:

ko = %(1.0197;2’3 — 0.3759™ + 0.033). (52)

Numerical investigations show this formula to yield a
result coinciding with the exact one not only for large 3
but for practically all values from the domain of this pa-
rameter (up to n ~ 0.1).

The first term of expansion (52) coincides with the QDA
result [see formula (46)]:

koA = 1,01907 73, (53)

A similar statement holds also for the remaining &, for
m=1.

Comparing formulas (52) and (53), one can easily obtain
the applicability condition of the QDA for describing the
radiation intensity in the depth mode:

1

m ’ (54)

<<

or, taking into account Egs. (52) and (53) and expres-
sion (50),
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" << gz < 7, (55)

In accordance with the last inequality, the condition » >> 1
[expression (37a)] is sufficient for a region of depths to
exist in which the QDA is applicable.

In Fig. 4 plots are given of the dependences %,/o (solid
curve) and k,%4/o (dashed curve). In spite of the fact
that, when n = 0, ko = ¢ and k,®®* = «, one can see from
the plots that the difference between them, already for
7 = 10, does not exceed 10%. The QDA yields a value for
the depth attenuation coefficient that is somewhat ele-
vated compared with that of the exact coefficient.

The angular distribution of the radiation intensity in
the depth mode can be readily obtained from the exact
solution [Eq. (35)] or, within the framework of the QDA,
from Eq. (44). Since factorization of the angular spec-
trum of the radiation occurs in the depth mode, it is con-
venient, together with the intensity I.(z,0), to introduce
the angular function ®(8) = (1/y.)f(6/y.s), normalized by
the condition

f_:@w@do = f :f(«mdw =1. (56)

The quantity ®.(8) may be interpreted as the probability
density of photon scattering through angles between 6 and
° -';‘}?eon I.(z,6) may be represented in the form
I.(2,0) = E.(2)®-(0), (67
where
E.(2) = Ijg. exp[—(x + kg)z] (58
is the total radiation flux in the depth mode (oz >> #3).

The explicit expressions for (i) and g.. are given below.
In accordance with Egs. (35) and (27), g. and f(}), corre-

i.20
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‘ Fig. 4. Dependences of the ratio between the depth attenuation

coefficient ko and the scattering coefficient o on 7 in the exact
problem (solid curve) and in the problem in the QDA (dashed
curve).
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Fig.5. Plots of the depth angular distribution functions f@) and
FPAY) for 7 = 20, 60, and 150.
sponding to the exact solution, have the forms:

_ 1Fo(&0/2;60/2 + L& + 1L, —m) o F16o + 1; _77)’
o Fs(&o + Yo, E05 60 + 1, &0 + 1,260 + 1, —4n)

[

(59)
_ 1 o ()"
) moF1(& + 1; —) 555 & + Daun!
§0/2 +n
% [(§o/2 TR+ w”]’ ©0

where &, is determined by Eq. (28).
From Eq. (44) we have the following for the same quan-
tities within the QDA:

A = ¢oAi(—Bo) = 147, (61)
1
QDA(\) — -1/3

where Pg(x) is determined by formula (45).

From a comparison of Eqs. (60) and (62) it follows that,
when the QDA is applied, a qualitative property of the
exact solution is lost: the dependence of g, on 7. Truly,
this dependence is very weak: g. decreases slowly as
n increases, and in the region of large 7 (starting from
1 = 10) of interest, it lies in the following interval:
8- =~ 1.53 + 1.47.

We noted above that the angular functions pertaining to
the discrete spectrum decrease as 6~ as @ increases.
That statement is relevant also to the angular spectrum in
the depth mode. It is easily seen, in particular, if we re-
write Eq. (60), taking into account Eq. (29) in the form

_ 1. -n"
O = G+ L,-m 2 &+ Dol
(60/2 + n)3

X 63)

(/2 + ny + ¢ I*
The aymptote of this function is
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fo—>= = (64)
where

7
37 (65)

The dependences f(¢) and f LAy are presented in Fig. 5.
It can be clearly seen that, when ¢ = 0, the curves f @)
differ from the exact ones by 10-15%. These differences
decrease as 7 increases.

From Fig. 5 one can also note the increase, with the
growth of 7, of the width of the angular spectrum. Such
behavior can be revealed with the aid of analytical calcu-
lations, as well.

It is known that the dispersion of the angular distribu-
tion is calculated with the aid of the formula

0%, = f 6%(z,6)de / j I(z,6)d9, (66)

which one may transform, taking into account Egs. (56)
and (57), into the form

0% = 7,2 f T W@y, ©7

Although the second moment of phase function (1) does
not exist, the mean square of multiple-scattering angle (67)
is a confined value.. This is due to the effect of light ab-
sorption in the medium. The process of absorption sup-
presses multiple scattering through relatively large angles
and provides more rapid decrease of f({) [expression (64)]
as compared with the phase function [expression @]l
Substitution of Eq. (63) into Eq. (67) with account taken
of Eq. (16) yields the relation between the depth attenu-
ation coefficient &, and the dispersion ¢%):

ko = §<02>m, 68)

and we may obtain the expansion of (9*)« in powers of »:
0% = 7,£(1.0199*" — 0.3757 + 0.033). (69)

Within the framework of the QDA the value of %) is de-
termined by the first term of Eq. (69):

0% = 1019732, (70)

As 7 increases, the applicability condition ®H. <1
[expression (6)] for the small-angle approximation is vio-
lated. This circumstance imposes an upper limit on the
value of the parameter 7:

n<< 'y,f"s, (7D
or
l,. <1, (72)

The latter condition coincides with the initial requirement
of strong absorption [expression (5)] underlying the small-
angle mode of light propagation at all depths.

In closing, it may be noted that not only does the exactly
solvable problem considered above enable one to under-
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stand the laws of light propagation in an absorbing me-
dium, but it is also applicable as a good test for various
approximate methods of solving the transfer equation.
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